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Abshzct: Carbohydrates possessing a suitably positioned hydroql group in the presence of organoselenim ttagmts 
and iodine under an argon atmosphere un&rgo intramolecuku ~fagmetum~on-cydimtion mmion to give aldofnra- 
nose and aMopyrawse~nns of carbohydrates, spec@cdly. 

The stereochemical properties of carbohydrates combined with their ready availability make them at- 

tractive starting material for the enantiospecific synthesis of many highly functional&d coxnpounds.l Re- 

cently, we have mported new methods for the synthesis of four- and five-carbon chiral building blocks by 

~fragmentation2 and by tandem /3-fragmentation-cycliition3 reaction on appropriate sugar derivatives pm- 

moted by hypervalent iodine compounds. 

As a part of our ongoing program to develop new oxidizing agents we axe exploring the seldom 

investigated chemical properties of organoselenium (IV) derivarives,4 such as diphenylselenoxide (1),5 

diphenylselenium diacetate (2),6 diphenylselenium bis(trifluom)acetate (3)4b” and diphenylselenium hy- 

dmxyacetate (4)’ (Scheme). This last compound, a stable, non-hygroscopic, crystalline and readily available 

solid, proved to be an excellent reagent for the generation of alkoxy radicals which on suitable substrates can 

undergo intramolecular hydrogen abstraction 7a to afford cyclic ethers and &fragmentation 7b to give cyclic 

inides. These features encouraged us to study the capacity of selenium(IV) derivatives to promote carbohy- 

drate anomefic alkoxy radicals. 
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Preliminary results and conditions are specified in the Table. Firstly, the carbohydrate derivatives (5)’ 

and (7) were treated with diphenylselenoxide (1) in the presence of iodine under an inert atmosphere (Table, 

entries 1 and 2) pmducing the unwanted oxidation reaction, in auxndance with the known oxidizing proper- 

ties of selenoxkhq5 to give the D-ribonolactone derivatives (6)8 and (B), that have been used in recent years 

as versatile chiml intermediate~.~ Noteworthy is the selective oxidation of the anomeric alcohol for the 
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subsuate (7) leading to the unchanged secondary alcohol at C-3. Unfortunately, when the teagent used with 

these substrates (5) and (7) was diphenylselenium hydroxyacetate (4). mixtures of products were obtained. 

Nevertheless, when a second set of carbohydrate derivatives with a suitably positioned hydroxyl group 

was submitted to the rtactioll conditions, in the presence of diphenylselenium hydroxyacetate (4) and iodine, 

products resulting fnnn a tandem ~fmgmentation-cyclization tea&m were, succes&llly, obtained. Thus, 

the readily available 2.3-0-isopmpylidene-D-riifuranose (9)8 gave a sole isomer of the eqthmse derivative 

(10)3a although in low yield (25%) (Table, entry 3). The stereuchemishy of 10 has been established by the 

coupling constant relationships, the observed Jt2 = 3.7 Hz and J 23 = 3.7 Hz being consistent with a cis 

stereochemistry for protons at Cl, C2 and C3. A difkmntly protlected Dribose, 2,3-O-cyclohexylideneDri- 

bofuranose (ll), produced only a slight improvement of the yields, attaining 34% of the corresponding 

erythmse derivative (12)” (Table, entry 4). T&se tetrahydrofuranoses have been widely used as cbiral 

lZTll@dl A similar yield was obtained for the threose derivative (14)12 (37%) when 2.3-O&+ 

propylidene-D-lyxose (13) was submitted to the reaction conditions. For this compound the rrm-stereo- 

chemistry between the protons at C2 and C3 was confnmed by a coupling constant J23 = 0 Hz. This threose 

derivative (14) has been used xrcently as a chiral template for the total synthesis of (-)-echinosporir~.‘~ 

The ~fragmentation reaction does not depend on the C2 configuration and, in the above cases, the 

intermed&e generated3b is trapped by a primary hydroxyl group. However, this can also be trapped by a 

secondary hydroxyl group as occurred with 6-O-tert-butyldime$hylsilyl-2,3-O-isopropylidene-L-gulose (15)13 

which led to an L-xylose derivative (16)14 in moderate yield (55%) (Table, entry 6). Furthermore, ~-man- 

nose derivative (17) with a secondary alcohol produced the corresponding D-arabinose derivative (18)" in 

good yield (73%). 

The formation of carbohydrates in pyranose form is also possible through this pmcedum starting from 

carbohydrates in fbranose or pyranose forms. For instance, the D-arabinose derivative (@ in pyranose 

form was obtained from 2.3.4~tri-O-benzyl-D-glucopyrauose (19) (Table, entry 8) and the L-lyxose pyranose 

derivative (22)16 could be formed in good yield fkom 2,3,5-ui-0-bet@-D-galactofurauose (21) (entry 9). 

In summary, this work is the first example of a selenium(W)-reagent promoting ~-fragmentation of the 

anomeric centre of carbohydrates and intramolecular cyclization affording chiral templates which can be 

acult to prepare by other means. 

ExperirnenruC Procedure. A solution of 6-O-(rerr-butyldiphenylsilyl)-3-O-isopropylidene-D-mannose 

(17) (105 mg, 0.23 mmol) in dry carbon tetrachloride (10 mL) containing diphenylselenium hydroxyacetate 

(170 mg, 0.55 mmol) and iodine (58 mg, 0.23 mmol) was stirred under argon atmosphere for 4h at 80 ‘C. 

The reaction mixture was then poured into aqueous sodium thiosulfate solution and exuacted with metbylene 

chloride. Rotative chromatogmphy of the crude (n-hexane,‘etbyl acetate 85:15 v/v) gave 3-O-formyl-6-O- 

(tert-butyldiphenylsilyl)- 1,2-0-isopropylidene-D-arabinofuranose (18) (76 mg, 73%). 
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cDcl3) SH 8.03 WI, s), 7.41-7.31 (15H. m. Ar), 5.20 (IH, dd, J 3.5, 6.1 Hz), 4.86 and 4.61 (2H, AB. I 11.9 HZ, C!H~P~I), 
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17. All new compounds gave satisthctory high resolution mass spectra, consistent with the expected molecular famula 
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